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A STUDY OF HYPERSONIC SMM.L-DISTURBANCE THEORY I or

By MILTOND. VAN DYKE

SUMMARY

A syde?natic study h rna& of the approxiti hiscid
tluo~ of thin bodies mornngat such high supersonic speeok W
nonlinem%y is an eswntiu.1feuiure of the eUW4U%Mof jloio.
Th+?$r8t-ordersmahkhturbance emuziionaare derivedfor three-
dimensional math involving shock wamx, and e8that.e8 are
obtuinedfor the order of emor involved in the approximation.
The hypersonic similarity rule of Tsim and Hayea, and
Haye8’ uw!.eady anulogy appear in the cowr8eof the develop-
ment,

It is shown that the hypersonti i!hearysun be interpreted so
that it appliw also in tlw range of linearized supersonic $OW
theory. Henee, a single smuil-dtituxbanee theory, and rul-
Som”atedsimilarity rule, apply at ail 8uper80nic speeb above
the transonic wne.

several examplesare solmzi?accordingto the d-dtitwbarwe
theo~, and compared d the fd 8ohdi0n8 when avail.abk.
These in.cMe@ pasta wedge and cone, and detemninu$ionof
the initial gradid at t?u tip of plmu and dy ~m&
ogivt%. For& axidy symmei%.oogive it ix 8hmvnt.hu4f&
term8can befound only by wsingLi@!MU’s techntim of rend.iw-
ing solutions uniforndy valid, and thu8 the iniiiul curvatureof
tke pre8w-e distdution b cdmdu$d. It is cdwded tha$on
a body if revolution demriliedby a power 8eri.a, the prww.re
distributwn and shock wave are also given by power 8eri193.

A brief discumion is gwen of txzrimMao!.dMonuJapmxinw
twnsfrom existing theories.

INTRODUCTION

Aerod~amic shapes are ordinarily most efficient when
they cause the least flow disturbance. For this reason,
simplified theories based upon the assumption of small dis-
turbances due to thin bodies have proved to be of practicil
value in analyzing incompressible, subsonic, transonic, and
supersonic flows.z For flows at Mach numbem large com-
pared with unity, however, the pressure disturbances may
no longer be small (compared with the static pressure)
even for thin shapes, so that in this sense it has been said
that no iimall-disturban~ theory exists (ref. 1). However,
if viscosity can be neglected, the veloci~y disturbances
remain small compared with the speed of @ht (though not
compared with the speed of sound), and even the prewure
changes are small if compared with the dynamic pressure.
In this sense, therefore, a small-disturbance theer~ exists,
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and the assumption of such small disturbances leads to a
useful simp~cation of the equations for compressible flow
at arbitrarily high lMach numbers.

Viscosity and heat conduction must be neglected in order
to have a small-disturbance theory. Otherwise, for example,
the viscous no+lip condition would introduce velocity dis-
turbances equal to the speed of flight. In many cases this
simplification does not destroy the essential features of the
flow. In other cases, the inviscid theory may serve as a
basis for including viscosity and heat conduction. Thus,
recent studies of the hypersonic boundary layer (refs. 2 and
3), which indicate that viscous effects become essential at
extreme Mach numbem (say, greater than 15), replace the
boundary layer by a fictitious solid surface and then utilize
inviscid theory of the sort considered here.

At suiliciently high Mach numbers, inviscid flow past any
given thin object requires nonlinear equations for its de-
scription. We take this as the definition of hypersonic flow:
Supersonic flow paat a thin body is termed hypersonic if the
Mach number is so great that nonlinearity becomes an essen-
tial feature. Thus, the definition of hypersonic flow stands
on an equal footing with the generally accepted meaning of
tramonic flow at the other extreme of the supersonic range;
that is, flow at a Mach number so close to unity that non-
linearity (of a diflerent sort) is an wsential feature. These
two terms-tnmsonic and hypersoni~ are most meaningful
when defined (as here) only for thin shapes. They then
describe two quite distinct regimes which are, moreover,
separated by a eunsiderable range of “ordinary supersonic”
flow in which the transonic and hypersonic nonlinearities are
unimportant, so that linearized theory can account for all
s~cant features of the flow. If one attipts to ~~d

the terms to thick bodies, the two separate regimes tend to
merge, so that one must concede that a flow field can be
simultaneously transonic and hypersonic.

It should be noted that the term hypersonic has occasiona-
lly been used in the literature with other meanings than that
adopted here. Flows are sometimes called hypersonic if the
free-stream Mach number is simply large compared with
Unity (say, 10 or 5, or even 3). This is not Stl-ictiy eq~v~~t

to the present definition because, in prinoiple, at any given
Mach number a body can always be chosen so thin that
nonlinearity is insignificant. However, such extreme thin-
ness does not arise in practice, so that the two definitions are
equivalent for practical purposes. Again, Oswatitwh has
detined hypersonic flow as the limiting condition for a given
body as the fcee-strwn Mach number tends to infinity
(ref. 4). This is a limiting case of the present dtition and,
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indeed, Oswatitsch% similarity rules for thin bodies are
simply special c.aseaof the more genenil rules.

Associated with each of the various small-disturbance
theories is a similarity rule which connects flows at difFerent
speeds past af6nely related shapes. In the case of linearized
subsonic and supemonic theory, the similarity rule was fully
understood only long after the small-disturbance theory was
in common use. On the other hand, the transonic similarity
rule was’ developed concurmdy with the small-disturbance
theory. For hypersonic flows, the simplified theory and
associated similarity rule were fit given by Tsien (ref. 5),
but were restricted to irrotational flows (and to plane or
axially symmetric shapes). Thi+ is a severe limitation be-
cause strong curved shock waves and consequent entropy
gradients and flow rotation are essential features of nearly
all hypersonic flow problems. This r~triction was removed
by Hayw, who indicated in a brief note (ref. 6) that Tsien’s
similarity rule is valid for rotational flows and for general
three-dimensional shapes. The rule was further extended to
unsteady motion by Hamaker and Wong (ref. 7).

As a result of this circuitous developmat, there exists a
gap in the hypersonic theory. The similarity rule is known
for full three-&nensionaI flows with curved shock waves,
but the underlying small-disturbance theory has never been
written down. (To be sure, however, its form is lmown from
the analogy with nonsteady flow in one less dimension, which
was pointed out by Hayes.) For the special csse of plane
flow, and for Mach numbers which are not arbitrarily hwge,
this gap has recently been closed by Goldsworthy (ref. 8).
The published examples of applications of the theory are
limited to the few special caseswhich are strictly irrotatiomd
(e. g., the wedge and cone) or are assumed to be approxi-
mately so.

The present paper undertakes a systematic study of the
smalldisturbance theory for hypemcmic flow. First, the
smalklisturbance problem is derived by reduction of the
fuU equations of motion, boundary conditions, and shock-
wave relations. The similarity rule and unsteady analogy
appear in the cmirse of this development. This portion of
the paper may be regarded as an elucidation of Hayea’ note,
with estimatea obtained for the order of error. ~ext, it is
pointed out that to within terms of the order neglected, the
hypemonic similarity theory can be written in the form of
the sidarity theory for linearized supersonic flow, so that a
single theory and associated similarity rule cover both
regimes. Then, a number of special problems are solved
according to the smalklisturbance them-y and are compared
with the full solutions when they exist.

The symbols used in the text are defined in Appendix A.

HYPERSOIUCSMALL-DISTURBANCETHEORY

B=C .4SSlJ&lYl10Nt3

Oms.ider a three-dimensional body fixed in a steady uni-
Eormstream. Vkwosity and heab conduction are neglected,
which implies that shock wavw will be approximated by
abrupt discontinuities.

The body is assumed to be thin, in the sense that the
strwunwise slope of its surface is everywhere small compmed

with unity. The degree of thinness will be measured by the
small parameter ~ which may, for example, be taken to be
the maximum slope of the body,3 or its thickneaa ratio.
Eowever, for inclined shapes r must be indent%ed with the
angle of attaok if it is considerably greater than the body
thiclmess.

The free-stream Mach n~ber M is assumed to be so high
that the flow is hypersonic. That is, linearized theory is
inadequate for predicting the essentisl features of the flow.
It is known that linearized theory yields an adequate ap-
proximation if the mtium body slope is small compared
with the sIope of the free-stream Mach cone, that is, if f?r<l
where /3= ~M~. b thisratio approaches unity, linear-
ized theory grows increasingly inaccurate. Therefore the
flow is hypersonic if the ratio &is not small compared with
unity. Since r is small, this means that P and, therefore,
also M will be large in the hypemonic range, so that B is
nearly equal to M. Thus, the criterion for hypemonic small-
disturbance flow may be written

T<l
Mwl }

tith MT-1 or >1 (1)

From a mathematical point of view, it is convenient to re-
gard all the small-disturbance theories as being aaymp,totic
forms of the full theory for vanishing by thin bodies. Thus,
the criterion for hypersonic flow may be expressed mom
formally as: 4

(2)

We introduce a Cartesian coordinate system with the
positive x ti alined with the free-stream direction (figure
1). Let the surface of the body be deacrbed by l?(x, y,z) = 0,
and the complete system of shock waves by JS(z,y,z)= O,
-wherethe function S is not, of course, known at the.outset,

,r-s=ov

‘6=0 .
FIGUBE l.—I?otation for hypmmniu flow past thin body.

FULL PEOBLEM
.

Consider the problem of determmm. . g the three velocity
components u, U,w, pressurep, and density p throughout the
flow field in the vicinity of the body. The mathematical
system required is the differential equations of motion

*IfW @lOPh hfghh mme5tMl I@CMof th bdY, as at 8dfghUY blunt lag &dgo,It
~Y h P~ t~ * ~-~’= thm ~ vfdfd OXC@Pt]OdY. III this
-rmlght ht8kMlt0 btbtMCklESSrd0.

~Ewetheorc%rsymbolsarensedfnthemnvmtkmlmnas:j(r)-o(l) FU+0 mmna tlmt
j(r) mmalns bounded as T+ @ and j(,) -o(fl@ means j(r)/q(,) Is O(l); sfmllorly, j(r) -o(1)
ma f(r) vonlshea 8s +0.
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(which govern the flow except at &continuities), theRankine-
Hwzoniot relations across shock discontinnities, and bound-

.

ary”conditions at the surface of the body and far tim the
body. .

Equations of motion.-The di.ilerential equations of mo-
tion, which express the principles of ccmmrvation of m*,
momentum, and energy, are

(continuity) (w).+ (P@.+ (PW).=0 (3a)
(z momentum) uw’s+Vl@-wlLA-p=]p=o (3b)
(y momentum) uvz+vvv-i-wvz+pJp=o (3C)
(z momentum) uw,+vw+Vlv.+pJp=o (3d)
(energy) u(p/p7).+v(p/p7)v+ w(’&/p7)z=o (3e)

(See, e. g., ref. 9, ch. 1) Here subscripts indicate diff6ran-
tiation, and Y is the adiabatic exponent of the gas. The last
equation actually .cxpre9seathe fact that the entropy is con-
stant along streamlines,which for steady flow is equivalent to
the conservation of energy (ref. 9, pp. 15-16).

Boundary conditions,-At the body the normal compo-
nent of velocitv must vanish. The unit normal vector at
the surface is &oportional to grad B,
become-s

~. grad B=O

so that the condition

where ~ is the velocity vector,, or

(tangency) UBZ+VBV+WB.=O at B=O (4)

The other boundary condition, which implies that the
body is flying into still air, maybe taken in various equivahmt
forms. For pre9ent purpose9 it is convenient to require tlwt
all disturbances vanish far ahead of the body:

U+um

v and w+O
(upstream)

P?.

P+’P.

Shook-wave relations,-At a shock wave, conservation
of tangential momentum leads to the requirement that the
velocity component tangent to the shock surface be con-
tinuous. The tangential velocity ccmponant (figure 2) is

given by z~=(~X~X~, where theunit normal vector ~ ispro-
portiomd to grad S. It is convenient to use brackets to de-
note the jump in a flow quantity across a shock wave so that,
for example, [u] is the increwe in u through the shock. With
this notation, the condition of conservation of tangential
momentum becomes

(tangential momentum) #=~=# at S=0 (6a)

This imposes two independent scalar conditions at the shock
wave, as physical considerations clearly indicate that it
should. For plane flow, say, in the z-y plane, the last term
bocomoa indeterminate and should, of coume, be dropped~

The remaining shock-wave relations express the con-
mrvation of normal momentum, mass, and energy acrosgtie

3mmG-5~7

Y *

I

,/ —-—
,/

7
FIGUEn2.—Components of velocity at shook wave.

shock. The magnitude of the velocity component normal
to the shock is (figure 2).

I Comecmmtlv, the other three shock relations are found to
be (re~ 9, p.-300), using the jump notation,

(mass) [P (@+vi%+ws,)]=o

(normal
momentum) [p (w%t-vSp+uN.)2+

(s:+s;+s.9 p]=o

(energy)
[

; (@-tvsv+ws.)’+

(6b)

at S=0 (6c)

(6d)

d, remaining
1& (S2+S:+S.T : =0

So far, these relations are quite symmet~
unchanged if the brackets are taken to denote the change
upstream rather than downstream through the shock. A
defbite sense of flow direction is provided only by the
second law of thermodynamics, which requires that the
entropy shall not decrease across each shock wave, so that

(2nd law of thermo.) [12>()at S=0 (6e)
P7 —

For later use we reccrd Bernoulli’s law

; (u’+ti+ti+&;=const. (7)

which holds, with the same constant, throughout the flow
field.

KUlsT-OllDBRPROB~

The full problem is now to be simplifiedby discarding all
but leading terms in the body thickness ~. This will give a
fit-order hypersonic small-disturbance theory, which can
be expected to provide a close approximation for thin shapes.

The reduction is conveniently carried out by introducing
new independent variables which are of order unity through-
out the flow field. The form of this transformation is
suggested by simple examples and limiting cases. For
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example, the approximate solution for a thin plane wedge at
very high Mach number has been given several times.
Pertinent results are that the lateral extent of the flow field
is some moderate multiple of the wedge thiclmes, that the
density never exceeds (~+ 1)/(7– 1) times ‘its free-stream
value, and that the relative streamwise velocity disturbwice
and the pressure Ccw.i3icientare of the order of the square of
the surface slope. Again, the Newtonian impact theory,
modified to include effects of centrifugal force, which yields
the limiting solution for M= ~ and ~= 1, shows pressure
coefficients proportiomd to the square of the thiclmem.
The tangency condition suggests that, in general, all cross
wind velocities vary directly with the thickness. Such
considerations suggest introducing new (barred) independent
and dependent variables, and reddning the functions
describing the Body and shock-wave surfaces, as follows:

~=z
1

.

B=B–@,~,Z)

S= LgiE,g,z)

}

J
(8a)

(8b)

(SC)

The new dependtmt variables are dimensionless, and the
new indepaudent variables may also be regarded as dimen-
sionl- if the body is of unit length.

We tentatively Qmwne that all the new dependent vari-
ables @, 5, etc.) and the new functions ~ and ~ are O(1) as
7+4) for flx~ MT, and that the reciprocals of the new
independent variables (l/Z, etc.) are likewise O(1). The
correctness of this assumption is sugg~d by examples such
as those discussed above; its justification will come from the
consistency of the remlting theory.

It is important to realize that the notation 5=0(1) includes
the possibility that in the limit 5 becomes arbitrarily small as
well as the possibility that it approaches a constant nonzero
Value; only the possibility of its growing arbitrarily large is
ruled out. For example, the reduced velocity components
Z, 5, and ti wiII be identicdy zero in the region ahead of the
body. On the other hand, it is deii.nitelyimplied here that
in at least some portion of the flow field the reduced quanti-
ties will not vmish in. the limit w ~+0.5 To be sure, they
may not all be of order of magnitude unity in the intuitive
physical sense; for example, for flow past a thin flat wing z
and 5 will be moderate multiples of unity, but i5 will be
numerically much smaller.

$Timt@j(r) =okiImlleatit fl.)lanot identMIIYo(7).

COMMITTEEFOR AERONAUTICS

Reduoed moblem.-l?h.is transformation of variables is
now introdu~ed into the full problem of equations (3) to (6).
If we discard terms which contain T’ explicitly, such as #@.@.
in the continuity equation, the differential equations become

(z momentum) ~+~i+=+?d;=o

(continuity) Z-1- Gh+ m;= o

(y momentum) F;+TF;+G;+gfi=o

(z momentum) G=+TTo+~+~/;=o

(energy) @lPT2+~@lF%+=@177;=o

the boundary conditions become

(~~ency) B;+z;+a;=o at 27= O

%,5,=+0

(upstream) p + l/7M’r’

}

aaz +-m

F-1

and the jump conditions at the shock waves become

(tangential
momentum)

(mass) ‘
(normal
momentum)

(energy)

(2nd law
of thermo.)

F (E+Z’S’+W-S’J]=O

17m%+a-t=%’+
(~+-s$)~]=o

(9)

(loll)

(lc)b)

(1OC)

(lOd)

(11)

(12)

at 3=0 (13)

The parameters M and r of the full problem enter this
reduced problem only in the combination Mr, which appmm
only in the upstream condition on ~ (eq. (12)), In the
hypersonic range, where l/JZ7=O(l), the reduced problem
possesses complete internal consistency. This is most read-
ily understood by considering tit the case where it doos not.

In the range of linearized theory, where 0 Mr<l, equa-
tion (12) presents a contradiction. It was assumed at the
outset that ~ is O(1) but its value upstream, (l/M’#), is
then not O(1). This inconsistency is an automatic wruming
that the reduction breala down in the range of linearized
theory. lhdeed, it will be seen later that the assumed
orders of reduced quantities are then actually incorrect,
and that the reduced equations fail to describe linemized
supersonic flow.

In the hypersonic range no such inconsistencies arise.
Hence, the tentative assumptions regarding orders of re-
duced quantities are justitied a posterior, as are the sim-
pli@ations effected by diyxmding terms that involve #
explicitly.

6More -y, WkO Mr-o(l) - r+.
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Order of error,-Because terms of order + have been
omitkd in the reduction, fit-order quantities will diifer
from their exact valuea by O(+). For the special case of
plane flow, an analysis similar to the preceding has been
givrm by Goldsworthy (ref. 8), who considem only a single
bow wmve:7 he furthermore confines attention to the range
MT* 1 [which, to be sure, may -be the range of most prac-
tical importance) and finds the error to be 0(1/~. This
is equivalent to the present rcault in that range. However,
tho present result is more general, holding for arbitrarily
large valuea of the similarity parameter (assuming, of course,
that the assumption of a continuum flow remains valid).
For example, at infinite free-stream Mach number, the
error in first-order theory is correctly 0(+).

It is interesting to note that the error in the various iirst-
order small-disturbance theories decreasesprogressively from
O(#fl) in transonic flow to O(7) in linearized su@emonic flow
to O(#) in hypersonic flow. Therefore, under the plausible
assumption (confirmed by later examples) that these math~
matical order estimates give a reasonable indication of the
actual physical magnitude of error, the practical need for
a mcond-order solution is seen to be greatest for transonic
flow and lenst at hypersonic speeds.

Unsteady analogy,-A significant feature of the reduced
problem k that the problem for the streamwise veloci@ z
haa been uncoupled from that for the other variables. Equa-
tions (10) to (13) constitute a complete problem for ~, 75,~,
and ~, which can be solved independent of 77. Thereafter,
Z (if required) cm be determined from Bernoulli’s law:

z++(7+Z7)* ;=const. = (7–1L%9
(14)

Consequently, equation (9) and the first terms of equations
(12) and (13a) are superfluous and can henceforth be dis-
regarded. .

h pointed out by Hayea (ref. 6), this first-order problem
is completely equivalent to a full problem for unsteady flow
in one less space dimension. The reduced problem of equa-
tions (10) to (13) is precisely the full problem of unsteady
motion in the ~-~ plane due to a moving solid boundsry
described by ~(Z,~,Z) =0, where 5 is interpreted as the time,
and all other barred variables as the actual physical quan-
tities; The outline of the moving boundary is given by the
tram of the original thin shape in a crowstream plane which
moves downstream with the free-stream velocity (iigure 3).
For example, the problem of steady hypersonic flow-pad a
slender pointed body of revolution is equivrdent to the prob-
lem of unsteady planar motion due to a circular cylinder
whose radius varies with time, growing from zero at time
E=O. Hayes hnsgiven aphysicdexplanation of this analogy.

It maybe noted that the analogy is similsr to that arising
in the slender-body theory of linearized compressible flow,
ns exemplified by the work of Jones (ref. 10) and Ward
(ref. 11). There, howevw, the time-dependent analog is
incompressible, whereas here it is definitely compressible.

! u ~ fm~tit b mnsirlm multiple sboc@ bemnm it fs not at dl obvfons tkot snb-
Wu@ 8hoo& Iuwe tbe same stntns w tbo bow shcd+qfn pmtkdar, at 34-. the npstrmm
Maoh nnmbar h Irulnltnfor tbe Mw ab~ but M mcdorato sapersmdc values for tho snkue-
quont dlocka

1Tbe nndtstuctmd flufd bas dermftyz. -1 and p~ Zm =1/7w.

-— —

-—

-- —

-—— / I----- ——

-.--—

-— ~

Y//-—_“/
FIGURII 3.—Plane of unsteady analogy.

Wn.i.lariwrule.-The parameters -&f and r appear in the
reduced problem only in the combination MT) which is the
hypersonic similarity parameter of Tsien. This means that
for bodies derivable from one another by uniform contraction
or expansion of all dimensions normal to the stream, the flow
fields are related if the corresponding Mach numbers are
such that the similarity parameter 14T is the same in each
csse. The nature of this relationship is simply that the re-
duced flow quantities, as functions of the reduced coordinates,
are the same in each flow. AU distinctive flow surfaces, such
as the body itself and the shock-wave system, have identical
descriptions in terms of the reduced coordinates. This is
the hypersonic similarity rule of Tsien, which was extended
to rotational and three-dimensional flow by Hayes. Its im-
plications with regard to pressure and force coeilicients fl
be summarized later, after the hypemonic ruIe has been com-
bined with that for ordinary supersonic flow.

Extension to unsteady flow.-For simplici@, the preced-

ing discussion has been restricted to steady flow. It can
readily be extended to unsteady motions involving small
timedependent oscillations of a thin body exposed to a steady
uniform stream (or, from wother point of view, flying through
still ah executing slight timedependent variations from a
mean steady rectilinear flight). The full problem is Ob-

tained by replacing a substsmtial derivative ub/~+obPy+
wb/i3z wherever it appears in equations (3) to (6) by its nn-
steady counterpart hPt+uhJdx+vt@y+ whPz. Corre-
spondingly, if a reduced time ~is introduced according to

then the unsteady small-disturbance problem is obta@ed
from the steady problem of equations (9) to (13) by adding
@ throWhout to the operator ?@+Sa/&j+ZbpZ. For
example, the reduced continuity equation (eq. (lOa)) be-
comes, for unsteady motion

%+%+ (3%+(@zk=o (16)
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The problem for ii remains uncoupkd from the problem
for the other var~ables? Furthermore, in the remaining
problem the Z and t derivatives appear only in the combina-
tion b/bi+b@-. This means that the number of independ-
ent variables can be reduced by one by adopting the view-
point of an observer who is moving with the free stream (or,
to put it another way, who is fixed in still air with the body
moving past). Thus, inhwducing “still-air” coordinates

a?=z-u.t 3?=5-U.7

}
(17)

t’= t ~1=~

reduces the unsteady smalldisturbance problem to exactly
the form of the steady problem (eqs. (9) to (13)), with 1 re-
placed by 2’. This means that Hayes’ analogy remains
vahd for unsteady motion if account is taken of the actmd
variation of the contour with time as well as the apparent
variation due to relative motion depicted in figgre 3. This
result was tit given by Hamaker and Wong (ref. 7). Re-
cently, Lighthill lws analyzed oscillating airfoils at hyper-
sonic speeds from this point of view (ref. 12).

If the b~dy oscillates so rapidly or_with such large ampli-
tude that 11~is much greater than lla the error remains of
O(fl onIy if 7 is taken to be the maximum instantaneous
slope of particle paths at the surface of the body.

Uniiled supersonic - hypersonic small - disturbance
theory.-It would be advimtageous if the hypersonic small-
disturbance theory included linearized supersonic theory as
a special case. Then the awkward question of what is the
lower limit of hypersonic flow would not arise. A single
theory, and corresponding simiIari@ rule, would hold for all
supersonic speeds above the transonic range.

In the case of transonic smalldisturbance theory, a uni-
fication of this sort is known to arise quite naturally (ref.
13, p. 9). In its original form (with & not replaced by
2(M-1)) transonic theory embraces linearized theory as a
speciil case, so that it furnishes eflectiv.elya unified subsonic-
transonic-supmcmic theory giving a first approximation at
rdlspeeds beIow the hypersonic range.

In the case of hypemmic flow, a connection with the ad-
joining supersonic range can likewise be effected (ref. 14),
but the reason therefor is much 1- straightforward. An
immediate obstacle is the fact that the approximations lead-
ing to the hypersonic them-y and those leading to linearized
theory are mutually exclusive. The diiliculty arise in the
continuity equation (eq. (3a)) which in the hypersonic case
was shown to reduce to

U. P.+ (At+ (P@s=o (18a)

but in linearized theory reduces instead to

U. PZ+P.U.+ p. (Uu+w.) = o (18b)

The term p.% must be retained in linearized theory;
whereas it must be neglected in hypersonic theory in order
to achieve similitude. It would therefore appear impossible

to give a small-disturbance theory which is general enough
to describe both hypersonic and ordinary supersonic flows,
and yet simplified enough to retain the corresponding simil-
itudes. It must be regarded as a coincidence that this can,
nevertheless, be accomplished.

It is shown k’ Appendix B that the hypersonic theo~
covens the ordinary supersonic range if it is reintmpreted in
accordance with the similarity rule for linearized theory
(ref. 15). It is found that solutions of hypersonic small-
disturbance theory remain valid at small valuea of the
parameter .M~ (which is the domain of linearized theory),
provided that Mr is replaced by & and the remdta am re-
interpreted in terms of physical variables according to

(19a)

rather than according to equation (8). The pressure
coefficient is given by

(19b)

Since the error is O(#) in the hypersonic theory and O(r/@
in the linearized theory, the error in this uni6ed theory is
O(fl or 0(7/8), whichever is the greater.l”

The flow quantities of chief aerodynamic interest are the
pressure coefficient and the various force and moment co-
efficients derived horn it by integration. If the hypersonic
d~turbance problem has been solved to ilml Up/# as a
function of the reduced coordinates and the parameter MT,
the result is rendered valid also in the ordinary supersonic
range simply by replacing MT by Br.

Unified similarity rule,-’l?he tied supersonic-hyper-
sonic sirnikity rule may be summarized as foIlows;

For steady flow piist thin bodies derivable from one
another by uniform contraction or expansion of all dimensions
normal to the stream, the flow fields are related if the cor-
responding Mach numbers are such that the similarity
parameter 13ris the same in each case (r being any measure
of thiclmesw). The relationship is such that the flow fields
are identical when expressed in tmms of the reduced flow
quantitilx

aa functions of the reduced coordinates

~g,~
lTT

1sFor sl.mder sha~ mob as th!n bwlfes of I’13v011MoxLtho Orrorf9 only 0(r%9) kI the ~.
arfmd themy an% honcc+0(+ orO(rvlmh the mmbhled theory.
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When the body oscillates slightly, the same is true with the
addition of u.t to the reduced coordinates, provided that
the time history of oscillation in terms of reduced coordinates
is the same for each body.

From the rule for pressures follows the equaIity of the
reduced force and moment coefficients

Here k=l if some plan-form area is taken for reference and
1=0 if some cross-sectional area is used. The connection
between the similarity rules for forces and momenta is con-
tained in the statement that the center of pressureis constant
in terms of the reduced coordinates.

An unlimited number of equivalent forms of the reduced
variables can be produced, for example, by multipltig by
my power of the similarity parameter. However, the forms
given here are the most useful on& in the hypersonic range,
because they involve functions of order unity. In the super-
sonic range no forms have this advantage, except in the
special case of plane flow, where it would be convenient to use

It should be noted that in the hypersonic and combined
simikwity rules the adiabatic exponent Y must remain
fixed, whereas its magnitude is arbitraxy in the supersonic
case (since it doea not appear in the linearized probkm).

TYPICALAPPLICATIONSOF HYPERSONICSMALL-
DISTURBANCETHEORY

Several problems will now be solved according to hypersonic
smalklisturbance theory. These examples will illustrate
possible methods of solution, and demonstrate the degree of
sirnplifkmtion resulting from the assumption of small dis-
turbances. Comparison with the corresponding solutions of
the full equations (when avaiIable) will indicate the accuracy
to be anticipated when the theory is applied to more elabo-
rate problems.

PLANE AND AXIALLY SYMMBRUC FLoWS

The examplcs to be considered are either plane or axkdy
symmetric flows. Accordingly, it is convenient to introduce
coordinate z,r where in the case of plane flow r is the Car-
tesian coordinate y. Henceforth, o wi.Udenote the velocity
component in the r direction, which is the radid velocity
for axially symmetric flows.

Equations of motion.-In these coordinate, the hyper-
sonic smalklisturbance equations of motion (eqs. (10))
become

@o;;+@);+u ~= (20a)

(20b)

(-m’’k+wa=o (20C)
The distinction between two and three dimensions ariseaonIy
in the continuity equation, where u= O for plane flow and
u= 1 for axially symmetric flow.

r-- furs(x)
r ,/

t
I

,

891

~.1’

FIGURE4.—Notation for plane or sxially symmetrio body.

Boundary and shook conditions.-Let the surface-of the
body be described by r=7b(z), as indicated in figure 4.
Then the tangency condition of equation (11) becomes

5=6’(E) at 7=t@) (21)

The upstream conditions are given by equation (12).
The exampks to be considered W involve only a single

bow shock wave, which may be described by r=~s(z). The
shock-wave conditions are given by equations (13), but in
this case it is easier to take advantage of the convenient
relations which are listed in reference 16. Equations (136),
(128), and (129) of reference 16, when reduced to hypersonic
small-disturbance form, give

~= 2 2–1
— — 8’(Z)
7+1 P

~=2Yd-(’Y-1) *,2m
7(7+1) F

(7+1) 2
~=2+(7—1) d

at 7=9(Z)

where K=lkfrs’ (3) is the hypemonic similarity parameter
based on the local &o&-wave slope.

Stream function .—The continuity equation (eq. (20a))
may be accounted for by introducing a stream function,
setting

?;= k 1

so that

(23)

(24)

Then equation (20c) states that ~fiy is a function onIy of ~, as
is clear from the fad that entropy is constant along stream-
lines between shock waves. Substituting rnto the momen-
tum equation (20b) gives
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{

w+l(-@w--t-@’w for plane flow (25@

*–2~*= *7+1

+[7”(+)+”:4‘era’dy-etic’”w(26b)

where

@(*) =y~~ (25c)

The prwsure is given by

p=@7=C44+97 (26)

PLANEWEDGE

As a simple introducto~ example, consider hypersonic
flow past a thin wedge of sernivertex mgle & Here, and in
the examples to follow, the solution is most readily carried
out by assuming a given shock wave and Mach number and
calculating the corresponding body shape. It is therefore
convenient to identify the thickness parameter ~ with the
shock-wave angle rather than the wedge angle. This is
quite permissible at hypersonic speeds, where they are of the
same order; it is also permissible in the ordinary supersonic
range, where they are not, provided that 6 rather than r is
used in the error estimates. Let li=~]r be the ratio of wedge
to shock angles.

The flow field is conical (velocities constant along rays), so
that the stream function has the form

4(Za=W(0 (27)

where 0 is a conical variable, defined by

O=-&;

which varies from b at the wedge to
Thus, equation (25a) becomes

(28)

unity at the shock wave.

f“ LP-Jk&’+q=o (29a)

where, from equations (22) and (25c)

~o=2Y&Y-1) 2+(7–l)@ 7
7(7+1) @~[ (7+l)Kog 2

(29b)

with ti=A4T. The shock-wave conditions of equation (22)
give (since s’= 1)

(30)

The solution of this problem, which corresponds tofl’= O,is

~(@=(7+l)K&2(K&l)
2+(7–1) K02

(31)

Requiriigj to vanish at the surface gives the ratio of wedge
to shock anglea

b=~2(&l)
T (-t+l)Ko’

(32)

The auxiliary hypersonic psmrneter m=M7 can now be
eliminated in favor of M$, with the result that

(33)

Then from equations (26) and (27) the pressure coefficient
at the wedge (or anywhwe between the wedge and shock
wave) is found to be

CP=’’w+w%%l(34)

These resultswere first given by Linnel (ref. 17). IWumeriaal
valuea of pressure coefliciant tie compared in figure 5 with
the exact results for wedgm of various thiclmeeses. Here 6
has been taken to be the tangent of the wedge angle, though
within the scope of the small-disturbance theory it might
equally well have been identified with the sine of the angle,
the an@e itself, etc.

I I I

-01 I 1 J
.333 .5 I co

. MR6

FIGURE 5.—Wedgeprcxmureacaordingto hypemonio small-disturbance
theory.

UnMed supersonic-hypersonic result.-Replaoing tho
parameter Ma by B8renders the solution valid in the ordirmry
supemonic range as well:

‘,=’’w+m%a ’30.
This resultis again compared with the full solutiom in figure 6.
The advantage of the unified result is obvious. In all sub-
sequent examples the results will be presented only in this
fol’!m.
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FIGURE6.—Wedgepressureaocording to unifiedsnpemonic-hypersonic
srnall-disturbancetheory.

It is interesting to note that this formula has been proposed
by Ivey and Cline (ref. 18) for predicting the surface pressure
on any superacnic airfoil. They obtained it by seeking an
interpolation formula connecting Ackeret’s linearized theory
with the hypersonic result of Linnell (eq. (34)) for a tangent
wedge.

INITIALGlt.ADI~TSFOBPLANEOGIVE

Using the full equations, Crocco first determined the initial
gradients of flow quantities at the tip of a plane ogive by
perturbing the solution for a wedge (ref. 19). His analysis
has been repeated and elaborated upon by ScMifer (ref. 20)
rmd others. This problem provides a good test of the small-
disturbanm theory in a case involving shock-wave curvature.
Let b be the initial ratio of body slope to shock-wave slope,
and 1the corresponding ratio of radii of curvature. Then in
physical coordinate the body (figure 7) maybe described by

Tb= ‘T(bxi+ (x?+ . . .)
and the shock wave by

(T*=T x+; lCXW-. . .
)

(36)

(37)-

“’’”k
FIGURE 7.—Plane or axially symmetric.ogive.

Here c will be negative for the convex shapes usually en-
countered in practice.

Shock-wave conditions.<onditions just bebind the
shock wave are found from equations (22) to be given by

__ 2(K7–1)

{
(’Y-l)KO4+(’r+5)KO’-2 ~z+–k=P&2+(7-1)# . . .

}1+ (&_l) [2+(Y–1)M’1

(38a)

.

47(7–1) (K&–l)’
[2YK7-(1’-1)] [2+(’r-l)%q ‘Cz+ “ “ . }

(38c)

where b=MT is the auxiliary hypersonic similarity param-
eter based upon the initial shock-wave angle.

Equations of motion.-The flow behind the shock wave
will consist of a uniform field upon which is superimposed a
perturbation field due to body curvature. Hence, along
each ray horn the vertex the flow quantities will have con-
stant valuea associated with the initial slope of the body plus
linear variations proportional to the initial curvature
(together with higher variations which need not be considered
in evaluating initial gradients). Thus, the stream function
of equation (25a) can be written in the form

. #(Zn=~j(O-Jti2g(0+ . . . (39)

Along the shock wave

*=F=E+ . . .

so that the entropy function u can be written as ~(u) by
replacing Z by # in equation (38c). Ii this form (since ~ is
constant along streamline) the expression applies through-
out the flow field downstream of the shock wave, so that

&@)=rJJl+zcqJ+ . . . ]

where
~=2’rKo’–(7-l) 2+(’Y-l)KO

‘Y(’r+l)K02 [ (~+l)K/ T

47(7–1) (K$–l)x
‘=[2-YKO’–(’Y-1)] [2+(7–l)Koq

(40a)

(40b)

Substituting these expansions for x and u into equation
(25a) and equating like powers of z yields two ordinary
differential equations. The first is equation (29a), corre-
sponding to the baeic flow past a wedge. The second, when
simplified with the aid of equation (31), becomes

f ~g’’–’2ff ‘g’+2j’’g=~(’+’) (~g’’–u#q (41)

solution for g,—By expressing conditions just behind
the shock wave in terms of conditions at 0= 1 through Taylor
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expansion, the boundmy conditions on g are found to be

52–1du=z+(y+s }“ (42)
4(’Y+l)@*

g’(l)=– [2+ (7–1) mllz

The velocities associated with g vary linearly with distance
horn the apex. Hence (as is readily verified horn the differ-
ential equation), g is a quadratic function of O, and can
therefore be written as

g(e)=g(l)–(1–e)g’(1)+ (1–0)9/’(1) (43)

Here &ly g“(l) is unlmown, and it is immediately found
from the d.inferentialequation to be

&y(l)=2(?’+ l)ti43(’Y-l)KO4+(3-7)m’+2(T’+2)
(K09-1)[2+(’Y-1)K0913

(44)

Curvature ratio and surface pressure.-The body curva-
ture and pressure gradient am be expressed in terms of the
values of E(O) and its derivative at 6= b. From equations

2(2Y-1)K04+(?’+ 5)K0’–(’Y-1)
ml= (’y+l)(@Ll)[2+(y– l)M.q

2&3~’+1)
<(0=-( ..2-1 )[2+(7- mol

(42) to (ti-)”~t is found that

(45)

The surface of the body is determined by the vanishhg of
the stream function. Thus it is found that the rabio of
shock-wave curvature to body curvature is given by

+f’o – (T’+1)’ff.o’(k+l)

2g(b)–2[2(m–l)KO’+ (7+5)%?–(7–1)1 (46)

The initial pressure gradient on the surface of the body is
given by

(47)

so that in terms of the initial slope I&’= 13~and curvatme
w’=cr of the body

~Qpl _ (7+l)J3’(3b’+1) [2’YF.+(’Y-1)1 R~&fl (48)
%_ *–(&_l)[2(~-l)@4+(~ +5)&_(~-1)]

Although these results have been expressed in terms of the
auxiliary parameter KO=Lfr, they can be given explicitly in
terms of Mach number and apex angle (in the combination
i141&’=.M&) with the aid of equation (33). In this respect
the small-disturbance solution is superior to the full solu-
tion, which yields no such explicit results. Replacing
M&’ by I@’ rendem these results applicable at all super-
sonic speeds.

The small-disturbance result for the curvature ratio is
compared in figure 8 with the fdl solution for various vertex
angles, taken horn the convenient tabulation of reference 21.
Figure 9 givw the cmmsponding comparison for the initial
pressure gradient.

.

8

1
8=15”----7

(Ref. ’21) \
4 -—. - Y

‘\. _ I0°
5

-------- z’~mall-disturbance theory

o - t
..25 .333 .5 I w

~ R;

FIGTJIZFI 8.—Initisd ratio of shook to body ourvature for plane ogive.

5 .333 .5 I co

Figure 9.—Initial pressuregradient on plane ogive.

CIRCULAR CONE

Consider flow past a slender circular cone of semivertex
angle & (figure 10). Again it is convenient to regard tho
Mach number and shock-wave angle as given, and to solve
for the corresponding cone angle. Thus let the shock-wave
angle be ~ and the cone angle 6=67, where again b is a
constant less than unity that is %o be determined.

Equation of motion.-The flow field is conical so that all
-flow quantities are constant along rays. This means that
the stream function of equation (26b) haa the form

FIGUEE10.—Notation for oone.



A STUDY OF HYPERSONIC SMALL-DISTURBANCE THEORY 895

It follows that the equation of motion (eq. (25b)) becomss the
nonlinenr ordinary differential equation

(60)

Here m is the constant value of Pm behind the shock
wave, given by equation (40b), and ~=~r is again the
auxiliary hypersonic similarity parameter based upon shock-
wave angle.

Boundary conditions.-The’ shock-wave conditions of
equation (22), together with equation (49), combine to give

(51)

The condition of tangent flow at the cone requires that
the stream function vanish at the surface:

f(b)=o (52)

Numerical integration,-’llhe nonlinear equation for ~,
equation (5o), can be readily integrated numerically.
Choosing a value of the auxiliary similari@ parameter w,
we calculate UOfrom equation (40b) and tho initial values
of j and Y from equations (51), and then integrate step by
stop inward from the shock wave until f vanishes,which
determines the cone surfaca With the ratio of cone angle
to shock-wave angle 6/~=b thus determined, the results
can be re-expressed in terms of the similarity parameter
based upon cone angle. Eight or ten intervals between
shock wave and body yield ample numerical accuracy,
provided that in each step the predicted values off and its
derivative are corrected by averaging and iterating before
proceeding to the next step. @’or values of M near unity,
tho first few intervals near the shock wave must be taken
smaller than the others.)

The pressure coefficient is obtained in terms of the &t
derivative of the stream function according to

(53)

whero the similarity parameter Ma of the hypersonic prob-
lem is to be reinterpreted as 133so that the result is applicable
throughout the entire supersonic range.

Computations have been carried out for v= 1.405, in
order to compare with the full solutions tabulated by
lIopal (ref. 22). The chosen values of the parameters are
listed in the following table, together with certain of the
results:

I M,
I

8/7

1.04 0.8620
L 19 .6645
L 58 .7281
2.87 ;W&
4.47

m .9140
I

0.8765

1::::9
2.469
3.988

m

Y@)/b

L 217
L 522
2207
3.925
4973
6.149

3.183
2.646
2.333
2.154
2.116
2.091

The small-disturbance result for surface messure is com-
pared with the full results (from ref. 22) in ‘@e 11.

4

3

Cp

y
2

I

o

Full solution
(Ref. 22)

.333

I
notI–dlsturbonce theory

I
I

8=10”-–-J

8=15” -–– J

I

.5 I
PI?:

FIGUWJ11.-%rface presme on cone.

The differences between the full solution and the small-
distnrbance limit are closely proportional to the square of
the thiclmess, in accordance with the estimate of the error ~
0(3’) or 0(62/13~. It is noteworthy that the hctional di&r-
ences are in fact very nearly equal to F. The same i9 true of
surface pressures in the previous examples. This suggests
that the mathematical order estimate may be relied upon to
give a quantitative prediction of the error in the small-
disturbance approximation.

This approximate solution for cones wss previously sought
by Shen (ref. 23), whose result is rdso &own in figure 11. It
appears that his solution, which involvw more rnvolved
computations, must contain errors.

INITIALGR4D~TS ON00IVEOFREVOL~ON

Considar the axially symmetric counterpart of Crocco’s
problem: the determination of the initial gradients of flow
quantities at the tip of an ogival body of revolution. This
problem has recently been considered for the full equations
by Cabannes (ref. 24) and by Shen and I& (ref. 25). It will
be se% that the small-disturbance solution serves as a useful
guide to the full solution. In particular, it clarifies the
behavior of the solution near the surface, which was glossed
over by Cabannes and in Shen and Lin’s work was mis-
wnstrued to indicate a sin@ari@ which implied wrongly

3138LfGLi-11~8
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that the initial pressure gradient at the tip of an ogive is
i.nilnit%.

As in the plane problem, let the body be described in
physical coordinate by

(
fi=r bz&ca?+ . . .

)
(54)

and the shock wave by

T8=
(

‘i- X+; w...
)

(55)

(figure 7). Conditions just behind the shock wave are given
by equation (38), with –~ and ~ replaced by –@> and
hp.

Equations of motion.-Again along each ray the flow
quantities have constant values corresponding to the initial
slope plus linear variations proportional to the initial curva-
ture (together with higher variations which are considered
later). Hence, the stream function may be written in the
form

WZa=m(o–tag(e)+ . . . “ (56)

Along the shock wave

+;-+; 52+ -..

so that an expression for the entropy function u throughout
the flow field downstream of the shock wave is obtained by
replacing Z with &# in equation (38c). Hence,

@)=@[l+kl@+ . . .] (57)

where q and al are given by equation (40b).
Substituting these expansions into equation (25b) and

equating like powers of Z yields for f the nonlinefw ordinary
differential equation already treated in the Problem of the
cone (eq. (50)), and for g the linear equation

Dg’’=A+Bg+C~

whose coefficients depend uponfaccording to

~=uw,f’:,: f“
— [~f–’m (&f”)]e-

B=nffn
fu7+L-1 7+.2 f~

[
c=woo~ ~ 1—–(y+I)r–WY

ff(T+u
D=-YwO~–4f g

(58a)

(58b)

As in the plane problem, initial conditions on g are found
by expressing conditions just behind the shock wave in
terms of conditions at 0=1 through Taylor seriesexpansions:

h+—1
9m=2+(7_l)M2

(#(l)=-@’ (Y–l)b’+z(ti+a)
} “-(59)

[2+(-Y- l)mq’

Behavior of solution near body surfaoe,-Just as condi-
tions at the curved shock wave h&e been related to those at
0=1, so with the present coordinate system it is necessary
to relate coriditions at the surface of the body to those on the
initially tangent cone 0= b. However, the solution is non-
analytic near the surface, which means that Taylor series
expansions do not exist. It is therefore necessary to examine
the nature of the solution in the vicinity of the body.

The function f associated with the basic conical flow is
analytic near the surface (and vanishes at 0=6), so that it
has a Taylor series expansion:

f(e) =(e–b) f(b) +o[(o–b)q (60)

It follows from equations (58b) and (60) that near the surface
the coefficients of the differential equation for g behavo like

A ‘-(e-b)-l/* )
B-(e–b)

c-l
t

(61)

D-1 J
Therefore the point L9=bis a singular point of equation (58rL),
but is an ordinary (nonsingular) point of the homogeneous
equation obtained by deleting A (see ref. 26, p. ’73). There-
fore the general solution of the homogeneous equation is
analytic and can be taken to have the form

g+% (e–b)” (62)

where aII higher coefficients as can be expressed in terms of
the two arbitrary constanti % and % by means of the differ-
ential equation. Then the procedure for calculating a
particular integral (ref. 26, p. 122) shows that the nonhomo-
geneous equation (58a) has a particular integral of the form

g.=(e— b)@&(e-13)’ (63)
o

where the coefficients G can all be determined. Here the
3/2-power branch point @es from the fact that the pencil
of fluid striking the tip of the ogive is spread thin over the
entire surface, and the linear entropy gradient at the tip
due to a curved shockwave is thus intensified to a square-root
gmdient normal to the surface elsewhere. The complete
solution of equation (58) is the sum of ghand gp.

In treating the full problem in reference 25, Shen and Lin
chimed to have found a logarithmic singularity at O=bj
which considerably complicated their analysis. Because of
this siugulwity, their solution ma rwtricted to concavo
bodies (although they conjectured that it might be intended
to convm bodies). The singularity also led to the conclusion
that for an analytic body shape the shock wave is nonana-
lytic, and vice versa. Furthermore, the singularity would
imply that the initial pressure gradient on an analytic body
of revolution is infinite, although numerical solutions by the
method of characteristics give no indication of this.
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The present solution shows no such singularity. It seems
unlikely that a sir&ularity could have disappeared as a result
of making the small-disturbance approximation, since this
wodd imply that the approximate model does not retain the
essential featurea of the full problem. The alternative con-
clusion is that the singularity does not actually exist in
tlm full problem. This has subsequently been confirmed by
tho authora of reference 25’1 who find that the singularity is,
in fact, only apparent in the sense of referenoe 26, page 406.

It may be noted that Cabamm, in treating the full
problem, has completely ignored the nonanalytic nature of
the solution, and simply extrapolated his numerical solution
to the surface of the body (ref. 24). His results may not be
seriously in error, because the effect of t~ nonanalyticity
is small.

Numerical integration,-The differential equation for g
has been integrated numerically for the six values of the
similarity parameter chosep previously for the cone. The
integration was carried out step by step starting from the
known values at the shock wave and using the same intervals
m for the cone. This step-by-step solution was joined at the
two points nearest the sufface with the series expansion
about O=b given by equations (62) and (63):

g(4=%f+.f’(ly’ (e-’)’++.%(%-+)‘+1+
g(b)[1+2L4–A(1+2X)64+ . ..]+

g’(z))(L9-b)(1+;6–y M+y M+ . . .) (64a)

where

[

f’(1))(~-’) -1 e_~
~= ~@ ~(7+1) 1 )-—b (64b)

~aluea from the step-by-step integration and the series
expansion were rho compared at the third point from the
surface as a check.) Because they are based upon the
previous solution for a cone, the computations were carried
out with ~= 1.4o5.

Curvature ratio and pressure gradient.-Because the
nonrmalyticity appears only in higher terms of the series,
surface values of g and its first derivative (but no higher
derivatives) can be expressed in terms of valuea at 0=6.
The surface of the body is determined by the vanish@ of
the stream function. Thus the ratio of sho&-wave curva-
ture to body curvature is found to be given by

~_f ‘(b)
2g(b) (65)

Proceeding as in the plane case, it is found that the initial
pressure gradient is expressed in terms of the initial slope
l&r=br and curvature W’=cr of the body by

Numerical values of g(b) and g’(b) are listed in the follow-
ing table, together with the resulting vahms for the curvature

11b np~vohmmmtitlo~ ~ also Addendum No. Itord.2&

ratio 1 and surface pressure gradient:

F
~Ro’

O.3765

i !;;9
2.469
3.988
m

m)

5.170
L 800
1.573
2.101
2.487
2.931

d@)

–8. 502
–a. 640
–4. 073
–6. 820
–8. 638
–10:76

O.0426 5.532
.2346 4662
.5106 “4514
.8039 4.684
.8921 4802
.9586 4.929

,

The curvature ratio is plotted in figure 12, and the initial
pressure gradient in flgur~ 13. The curvature ratios calcu-
lated &m the full equations by Shen and Lin are also shown
in figure 12 for comparison, because the error introduced by
incorrect treatment of the solution near the body is probably
small.

/
.8 ~. 30” /

(Ref. 25)
/
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/

.4 .20”
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.333 .5 1 (
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FIQUTin12.—Initial ratio of shook to body ourvature for ogive of
revolution.

IDGHERTERMEINSKS.IHlFOEOGIVBOFREVOLUTION

It might be supposed that for an ogive of revolution de-
scribed by a power series, the perturbation scheme could be
continued indefinitely to find successively higher terms in
a power series expansion for surface pressure. However,
because of the nonanalytic nature of the stream function
near the body, complications arise if one proceeds simply
by adding further terms to equation (56).

It has been seen that g(0) involves an authentic 3/2-power
branch point near the surface. However, it can be shown
hat the next term will involve a spurious l/2-power branch
point there, the next an inverse l/2-powar singularity, and
so on. As a consequent of this spurious reinforcement of
the actual nonamlyticity, it is impossible iw evaluate surface
pressurw. Hence, straightforward contiiiuation of the per-
turbation procedure breaks down.

The Mliculty arisesfrom the fact that fi the fit perturba-
tion, the 3/2-power branch point in g arises at the basic cone
(O=b) rather than at its actual location on the ogive surface.
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(70fL)

FIGURE13.—Initial pressuregradient on ogive of revolution.

Although this discrepancy has no effect upon the first per-
turbation, it is compounded in subsequent terms so as to
be Catastiphic. The remedy is to choose a slightly strained
coordinate system such. fiat for each term the 3/2-power
branch point appears precisely at ~e body surface. Both
the difficulty and the remedy are just those considered by
Lighthill in his discussion of a technique for rendering ap-
proximate solutions uniformly valid (refs. 27 and 28). &
in the previous examplea, the solution proceeds, in effect, by
assuming a given shock wave and debrmhing the cmre-
sponding body shape. Therefore, the required straining of
coordinates is not lmown at the outset, but must be deter-
mined tQ successively higher accuracy as the solution
progresses; this is characteristic of Lighthill’s technique.

With this mod.i.ikation, the perturbation procedure ‘can,
in principle, be continued indefinitely. It can therefore be
concluded that an analytic body of revolution is accompanied
by an analytic attached bow shockwave at supersonic speeds,
and an analytic pressure distribution.

Uniformly valid equations of motion.-Let the body be
given in physical coordinates by

rb= T
(

bzfi C2?~ ti+ . . .
)

(67)

and the corresponding shock wave by

rs=r [z+ lea?+ (md+7-d) d+ . ..] (68)

Now introduce a slightly strained radial coordinate ; such
that the body surface is given by 7 =tm. ‘ The simplest
choice is

—

;kF+diP+. .?= F—

The procedure which led to equation
entropy function behind the shock wave

.

(57,

(69)

gives for the

@J=fJo{ l+dC@+[@I(77Zd+7kf)+@#d#+ o . .:

where cooand U1are given by equation (40b), and

4 (7+1)
*=(KO’-l) [2+(7–1) KoqO“

The stream function has the form

*=-Zf(fi-@z(i)-d[d;(e )+dz(i)]+ . . .

(70b)

(71)

where; is the nearly conical coordinate ~/z. The clifferential
equations which result from substituting this serica into the
e&ation of motion are simplified by set-tig

@=ti(@’ (i)

z(i)=~h(;) –;Y(3 .

;(a =1’j(;) +nh(;) +; z.g’(@’’(3)
.

(72)

(The functions g, h, and j thus introduced are those whioh
would appear in place of E, %, and ~ if no straining of the
coordinate system had been undertaken.) Then the diiTer-
ential equations (and boun+my conditions) for j and g, as
functions of the strained variable ~, are (as implied by the
common notation) found to be just those solved in the
previous sections, where f and g were functions of the
unstrained variable O. The differential equations for the
new functions h and j are

Dh’’=E+fi+Gh’

Dj’’=I+Fj+@’ }

where D is given by equation (58b), and

‘(7+”[ ( “-$)+flglE=wti, ~ 7j j

F=4(f’’+4fl9

Q=YJ’::: 7+2e [ 1
—–(7+1) $e

–12fy

[

/(7+0 * ,*
I=mf& #

-(’+1Gw’-9-

[@J+’%%m-”)-

~{zf(~’-%]+gp(~+ll--l]x

(%’’)+’4%%- -3[3gy’-1}1
2g’y–2(&–2ggf’)fJ

(73a)

(73b)

Boundary conditions,-Again, expressing conditions just
behbd the shock wave in terms of those at ~= 1 by Taylor
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series expansion and simplifying with the aid of the dMer-
ential equotions gives

h(l)=+ g(l)

2f(l) 1h’(l)+ [g’(0-2+(7_l)m2

j(l)=–;
[ 1%’(wq:l)%,

t

(74a)

2–(7–l)K”’y(l)=; f’’(l)–; g“(l)-4(7+l)K”2 [2+(7_ ~)mq8
J

where ~(l) is given by equation (51b), g(1) and ~(l) by
equation (69), and

j,,(~)= O’–ho’
2+(7’– 1)~*

jffJ(l)=– 2K$[2YM2–(7–lJ[2+(37+l)Koq

(’Y+l)(Ko’-1)[2+(7–1)Ko’1’
(74b).,

g“(l)=% [4(7–1) (2’Y+3)+4(2++3Y’+6) mz–

3(7–1)7’+(67+1) W4+2(7–1) (57+3) ti”lX
{(Ko’-1) [2+(’Y-l)Ko~’} -1 J

Behavior near body surface.-The fact tkt f(~) h
analytic at ~= b implies that the full solution for h is also
analytic, and that the solution of the homogeneous equation
for j is analytic. The coeilicient I is proportiomd to
(&b)-3”, so that a particular in- for j is proportional
to (&b)”g. For purposes of computation it is important to
separate the regular part of 1&m the singular part, because
either may predominate for the closest practical approach
to the singularity, depending upon the value of the similari~
parameter. Furthermore, the accuracy of joining the step-
by-step solution for j to the series is increased by treating
not j itself but the combination j+g’/2Z. Hence, the series
employed is

where ~b=j(b), etc., X and e are defined by equation (64b),
and

~=~ (%!b”)

gb

,_yyM (~ft$’)s”
}

(76b)
——

gb

Numerioal integration.-The d.iflerential equations for
h and j have been integrated numerically in the manner

outlined previously, -with -y=l.405. Because h represents
actually (like g) only a fit perturbation of the basic conical
flow “ and is furthermore regular near the body, it is readily
determined w-id ample accuracy. On the other hand, in
the equation for j, the coticient I is so strongly singular
that it was found necessary to replace simple step-by~tep
integration by the more laborious five-term procedure of
Milne (ref. 29, p. 142). The coefficients and boundary
values are also considerably more d.iflicult to calculate, so
the integration of j has been limited to three values of the
similarity parameter, whereas h hw been found for four
Values!.

The accuracy of the solution for j .9UfFersfrom the facts
that it depends upon the accuracy of the preceding solution
for g,” that one coefhcient in the differential equation is
strongly singdar, and that the rewlts of physical interest
are found as d.iflerences of nearly equal quantities. Con-
sequently, although results derived horn the functions j,
g, and h are probably reliable to three or four significant
iigures, those derived from j are perhaps not reliable to more
than tiO.

Body shape and pressure distribution.-The parameters
m and n, which relate the shape of the shock wave to that of
the body, are found, by requiring the stream function to
vanish at the surface, to be given by

(n= ‘fbn‘L I?%@
8 )J2 W-Z

The surface pressure coficient is given by

(76)

(77)

Thus it is found that on the surface of a body described in
actual coordinates by

r=Ro’x~RO’’ti+; Rot)’@+: . . . (78)

the pressure coefficient is given by

where
c,

[()

.
@“ fb’ 7_ ~

~ =2F7 1 .I@m”’)g
ac

b(RO’R,”X)p ‘WY(%’)

?W,
“%$7(+’b(RO’z) a(RO’”z) 3 b

WYp fb ‘ y–~gb” A zn~l L31k

a @OaX)2 (’)(

.Zyw ~ ———–

34 gb= 2b2 jb — fb’

(79
~Itconwpn& toapointedlwdy with zmoinltIalctmatmw Wmpam Ieferenm 24,

mm.
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Numericalvalues of h(b), h’(h), j(b), and j’(b) are listed in
the following table, together with the resulting values of the
parameters m and n which ralate the shape of the shockwave
to that of the body, and the two functions which give the
initial curvature of the surface pressure distribution. The
two pressurwurvature functions are plotted in figures 14
and 15. (Curves have bea faired through the three calcu-
lated noints bv analom with the results of the cone-eWm-
sion a~proxirn&ion &—cwsedin the following section.) n-

#Rti A(b) I h’(b)X0Y@J)m IJ

~mam 14-s’ -3a40 -------------- am51 ------

ac.

k
e%?

a(iww a(&’z) a(wfz)

. .. —----
4.04 :%!

4 Ml
1??’ hsss

Smell dmturbonce “theory---p,
5

T

/

0.
.333 .5 1

~R;
.

FIGURE 14.—Firstterm in initial pressurecurvatureon ogive of
revolution.

FURTHZZAPPROXIMATIONS

The theory discussed heretofore is the simplest which
retains all the essential features of hypersonic flow, so that
ita solutions approach exactness as the thickness tends
toward zero. Further approximations, although desirable
for fad$ating solution, will introduce errors whose nature
may be more obscure. In the case of plane flow, however,
further approximations exist which areso simple and accurate
that the problem may be considered solved for practicrd pur-
poses (cases (5) and (6) below). These and other approxima-
tions will now be considered for three-dimensional shapw, in
comparison tith the solutions already given.

Most of these approximations me useful outside the limits
of hypersonic small-disturbance theory. However, we shall. .
~Tk&tbm-hrm smiiesamrodmatfcmmsusedtodmWothe Ims91HovercdrudBr-

OI’ocgiv caforadmnadty prem8@rof L Thoreztdts weremmramd(mL $3) with the
mcthwlof~csdmtfons (reL31) mdahmmto be fn@egmem6ntxmc6tof
the @w. (Note that fn Figm% 7 of MeIonc8m thoKun2te shoddbo121EJki CJW
law thenC*)

6

Smollrdisturbonce theory-J

4

2

!!333 .5 I 1

~R;
)

I!IGURZlS.-Second term in initial pressure ourvature on ogive of
revolution.

consider them here only as they are reduced to small-disturb-
ance form, so that they actually represent approximations
beyond those already made. For example, the well-knom
shock+qansion method will be considered only in its hyper-
sonic amalldieturbance form (ref. 17).

The following additional approximations will be considered:
(1) Linearized theory, second-order theory, etc.
(2) New-tonim impact theory
(3) Newtonian theory plus centrifugal forces
(4) 7=1
(5) Cone-exption approximation
(6) Tangem%one approximation
(7) Comprwsion-layer approximatiori
Linearized theory, etc,-The breakdown of linearized

theory serv= almost as a defition of hypersonic flow.
Hence, the most that can be expected of I.inemized theory,
second-order theory, etc., is that they penetrate somewhat
into the lower end of the hypersonic range.

For plane flow Donov (ref. 32, pp. 90-91) has determined
the fourth-order solution. Reduced to hypersonic small-
disturbance form, his result for surface pressure coefficient
on a single airfoil maybe written as

(80)

where K is the local similarity parameter (M times 10CO1sur-
face slope), & its value at the ledng edge, and KO’ its
irritialrate of change. Even in this reduced form nothing is
known of the range of convergence of the series or, indeed,
whether.it converges at all. However, for a single wedge the
solution is knoivn in closed form from equation (34). Hence,

\
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it is seen thot in this special case the series is convergent for
~HM6<4/(y+l), which is L67 for air.

I?or cones the linearized and second-order solutions (ref.
33, p. 11), as reduced to hypemonic smalldisturbance form,
are shown in figure 16.

Cg
qz

c
.,

.

‘\

\ Hypersonic smoll-
.

\ Y= 1 disturbance theory
\

\

k
\

\ Newtonian

\
\

\.
\

\

e

>

8 = tan-lfi:

5 .3 1 w

/3R;

FIGIJZB 16.—Further approximationsto hypemonio small-disturbance
- theory; pressureon aone, V= 1.405.

Newtonian impact theory.-&wning that fluid particles
lose their normal momentum on impact with the surface
leads to a prediction of preswmw proportional to the square
of the sine of the angle of inclination or, in the small-& turb-
rmce approximation

c
@==2

(81)

wherever the slope is positive, and zero elsewhere. Accord-
ing to equation (34) the actual value for a wedge falls only to
2.4 at infinite Mach number (with 7=7/5), so that the ap-
proximation is poor for plane flow. It is more satisfackmy

for fusiform shapes such as a cone (iigure 16), for which the
actual value at M= w (with T=7/6) is 2.09.

Newtonian plus centrifugal forces.—New-tonian impact
theory has been improved by including the ctmtrifugal pres-
sure gradient through the layer of fluid streaming over the
body (refs. 34 and 36). The result is precisdy the limit of
the full theory as ~+ w and 7+1. In the smdldisturbance
approximation (ref. 33), it gives for plane flow

CP=2(R’’+RR”] (82)

and for ax@lly symmetric flow

C==2R’=+RR” (83)

10 both cases it is to be understood that negative values are
to be replaced by zero. Figure 17 shows that the improv~
ment due to including centrh%gal eflects is appreciable for
the initial pressure gradient on au ogive of revolution.
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FIQUFLZ17.—Further approximations to hypereonio srnall-disturbance
theory; initial premum gradient on ogive of revolution, ~= 1.405.

v= L-It h’aajust been seefi that on fusiiorm shapes near
M= co, the surface pressure is insensitive to the value of Y.
At the other end of the hypemonic range, linearized theory
is independent of y. These two extremes sugge9t that n close
approxhnation throughout tbe hyperaoDic range may be
found by setting -y= 1 (ud this is particularly true since in
a real gas Y approached 1 at high temperatures). This chojce
simplifies the theory by rendering it effectively isenfmopic;
that is, although shock waves produce entropy jumps,
entropy does not appear in the pressuredensity relation and
is therefore absmt from the problem.

This approximation has been twted by computing the
hypemmic smalkbturbance solution for a cone with -Y=l.
The results corresponding h those tabulated on page 11 are
shown in the following kble (including the known value
atilf= ~).

i I I I I !
MT

t+

.3Jr P6 Y@)/b C=p

1.@4 O.3912 0.4069 L 256 ~ 076
1.15 .5609 L 546 2627
1.50 7647 i E?” 2498 2277
m 1. CO m 2

1
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Figure 16 shows close agreement with the resultsfor 7=1.405,
the discrepancy being, indeed, less than that due to the
thiclmess of a 10° semivertax angle (cf. @e 11).

“Cone-expansion” approximation,-The shock-xpan-
sion method for plane flow, which neglects disturbances
reflected from the bow Wavel has recently been shown to
yield good accuracy at W-supersonic speeds away horn the
transonic zone (ref. 36).

A more surprisingdiscovery is that u analogous procedure
yields a reasonable approximation for certain three-dimen-
sional shapes in hype~onic flow. In this “cone-expmsion”
method the flow behind the tip of a pointed body is approxi-
mated by a Ilandtl-Meyer expansion (refs. 37 and 38).
The accuracy of this approximation is indicated by the
comparison shown in figure 17 for the initial pressuregradiaut
on an ogive of revolution.

Tangent-cone approximation.-~ewtonian impact theory
predicts pressures depending only upon the local slope.
This suggwts approximating the pressure at each point of
a body by that on a locally tangept cone or wedge at me
same Maoh number. For. plane flow this gives equation
(36), which yields good accuracy. For bodies of revolution,
figure 17 gives an indication of the accuracy obtainable.

Compression-layer approximation.-In the upper end of
the hypersonic range the bow shock lies close to the body
(if the body slope is positive). This suggests making ~

approximation somewhat analogous to that of the l?randtl
boundary-layer theory, assuming that the loyer of com-
pressed fluid between the body and shock is very thin,

For example, assume that the shock wave ha so close
to a circular cone that a linear variation is odequate to
dwcribe the stream function. Then according to equation
(51) the stream function is given by

(s4)

Requiring this b vanish at the surface gives as the ratio
of cone angle to shock-wave angle

~=~=(7+3)KOg-2
7- 2(’Y+l)KO* (86)

This result has been derived by Lees (ref. 39). At infinite
Mach number with 7=1.405 it gives 0.916 compared with
the true value of 0.914, and Lees shows that it is accurnte
even in the lower end of the hypemonic range. However,
for the cmwaponding surface pressure coefficient, the range
of good approximation is much smaller, as shown in
ilgu.re 16.

&s AERONA~Ic.4L LABORATORY
lYAmoNu ADWSORY CorarrmaE FOR&IRONA~Os

MOFFE~ l?IELD, CU., A&. 18,1964



APPENDIX A

PRINCIPALSYMBOLS , ,

A, B, U, D, 1?,I coefficient.a of differential equations (See
F; a: H, I“ “]13~S. (58) and (73).) -
B(z, V, z) function deiining body shape
z)(x)

b, C,d

0,

f, g, h, i

1

m, n

M
P
R(z)

r

s(x, V, z)

8(Z)

t

u, v, w

x, y, z

P

CONNECTION

reduced radius (or ordinate) of axially
symmetric (or plane) body
coefficients in series expansion for radius
(or ordinate) of body (See eqs. (36) and
(67).)

(P-P.)presmre coefficient, ,
; pmuaa

functions in series expansion for stream
function (See eqs. (39) and (72).)
initial ratio of shock-wave curvature to
body curvature
coefficients relating shap=
of shock wave and body [See eq. (68).)
free-stream Mach number
prc9sure
radius (or ordinate) of axially symmetric
(or plane) ogive
radius (or ordinate) in cylindrical (or plane
Carte9ian) .mordinatw
function defining shape of system of shock
wavw
radius (or ordinate) of shock wave attached
to axially symmetric (or plane) body
time
velocity components in (lu%esian or cylin-
drid coordinates
Cartesian coordinate tith z in streamwise
direction

1’
8

e

9

K (Z)

x

P

v

P

u

T

$“

@

% w, m

[1

(-)
(-)

( )’
( )0
( )b
( ).
( )=

APPENDIX B

BETwEEN HYPERSONIC AND LINEARIZED
SUPERSONIC SIMHIITUDE

The similitude for linearized supersonic flow is now wall
understood, having been first correctly stated by G6thert in
reference 15 (for the analogous case of linearized subsonic
flow). This similarity rule implies that the reduced coordi-
nates z, ~j and ~ of equation (8a) may again be introduwl,
and that then the reduced flow quantities,

~_l w
T u.

@la)

adiabatic exponent
semiverti angle of
(O–b)

b

conical variable, ~

wedge or cone

auxiliary hypersonic similarity parameter
based upon local slope of shock wave,
34T8’ (X)

gb

37 gb
densi@
constant which is zero for plane flow, unity
for axially symmetric flow “
thickness parameter of body; in examples,
initial slope of shock wave
stream function for plane or tially sym-
metric flow (See eq. (23).)
entropy function (See eq. (25).)
terms in series expansion for Q (See eqs.
(40) and (70).)
deuote jump in quantity through shock
wave
reduced form (See eqs. (8).)
form associated with strained coordinates.
(See eqs. (69) and (71).)
derivative with respect to argument
value at tip of pointed body
value at surface of body (or at 8,;=b)
value at shock wave
value in free stream

depend only on the reduced coordinates and the supersonic
similarity parameter fk.1 The error in the theory and asso-
ciated similarity rule is 0(7/19),in general. It may be em-
phasized that here, as in all the similarity rules, the choice
of reduced variables is by no means unique; an urdimited
number of equivalent forms can be produced for example, by
multiplying each reduced variable by, or adding to it, any
constant multiple of powers of the similarity parameter.
The particular forms adopted here were chosen to cmmspond

lHawtiwmwt withthehypmsonlo case, the redumd variables Z and 3 are deJ3nlMY
not O(l) as 7+3 (for N M).

903
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as closely as possible to their hypersonic ccnmterparts in
equation (8b), so as to facilitate the following argument.

For Mach numbers so lmge that Mis effectively equal to &
these results agree with those for the hypersonic case? and
this was pointed out by Tsien (ref. 5). However, it is more
fruitful to reverse the argument, imd observe that the hyper-
sonic similitude, just as it stands, is entirely consistent with
the linearized similitude. This is immediately apparent for
the reduced velocities .;, ~, and Z which [as implied by the
common notation) have identical forms in the two oases.
They differ only in depending upon diilerent parameters,
but in hypersonic flow M and P are interchmgeable to within
the accuracy O(#) of the theory, so that MT can be replaced
by p~ to complete the correspondence. For the pressure
and density, the hypersonic theory (eq. (8b)) shows that

Again utilking the fact that M and B are interchangeable in
the hypersonic range, these can be rewritten

where the ilnal forms depend upon the parameter & and are
therefore (as implied by the notation) identioal with their
linearized counterparts in equation (21b). Thus the cor-
re9ponclenceis comp1et8.

This means that the hypersonic smalldisturbance theory,
when properly interpreted according to the linearized super-
sonic similitude, yields a tit-order solution at all speeds
above the transonic zone. The reduced problem of equa-
tions (10) to (13) is solved for a given value of the pammet8r
MT, and then with MT replaced by 13~is interpreted in terms
of physicnl variablw according to

(B3)

REFERENCES

1.Lin, C. C., R.e&mer, E., and Tsien,H. S.: On Two-dimensional
Non-steady hfotion of a Slender Body in a Compremible Fluid.
Jour.Math. and Phys., vol. 27, no. 3, Oot. 1948,pp. 220-231.

2. Lees, L., and Probsteiu, R. F.: Hypemonio viscous Flow Over a
Flat Plate. Princeton Univ., Aero. Eng. Lab. Rep. 195, 1952.

3. Lees, Lester: On the Boundary-Layer Equatiohs in Hypemonio
Flow. and Their Approximate Solutions. Jour. Aero. Soi.,
vol. 20, no. 2, Feb. 1953,pp. 143-145.

i With ;.1+: andP-fi(@W+

4. Oswatitaoh, Klaus: ~ohkeitegesetze ftk Hyperaohidlatr&imung.
ZAMP, vol. 2, no. 4, July 1951, pp. 249-264.

5. Tsien, H. S.: Similarity Laws of Hyp+naonioFlows. Jour. Math.
and Phys., vol. 26, no. 3, Oct. 1946, pp. 247-261.

6. Hayes, Wallace D.: On Hypersonic Similitude. Quart. AppL
Math., vol. 5, no. 1, Apr. 1947, pp. 105-106.

7. Hamaker, Fmnk M., and ‘iVong, Thomas J.: The Similarity Law
for ~onsteady Hypemonio Flows and Requirements for the
Dynamioal Similarityof Related Bodies in Free Flight. NA(YA
TN 2631, 1952.

8. Goklsworthy, F. A.: Two+rnensional Rotational Flow at High
Maoh Number P& Thin Aerofoils. Quart. Jour. Mooh. and
AppL Math., vol. 6, pt. 1, Mar. 1962, pp. 64-63.

g. Cmrant, R., and Frieddchs, K. O.: SuperaordoFlow md Shook
Waves. Intersoience Publishem, Ino., 1948.

10. Jones, R. T.: Properties of Low-&peotiRatio Pointed Wingsat
Speeds below and above the Speed of Sound. NACA Rep.
835, 1946.

11. Ward, G. N.: SupersonfoFlow Past SlenderPointed Bodies. Quart,
Jour. Meoh. and AppL Math., vol. 2, pt. 1, Mar. 1949, pp.
7s-97.

12. Lighthill, M. J.: Oseillatiig Airfoils at High Maoh Number.
Jour. Aero. Sci., vol. 20, no. 6, June 1953,pp. 402-406,

13. Spreiter, John R.: On the Application of !fkansonio Similarity
Rules. NACA TN 2726, 1952.

14. Van Dyke, Milton D.: The Combined Supersonic-Hypemonio
Similarity Rule. Jour. Aero. Sci., vol. 18, no. 7, July 1951, pp,
499-500.

16. G&thert,B.: Ebene und ratimlioheStfimungbei hohenUnteraohall-
geaehwindigkeiten (Erweiterung der Prandtlsohen Itegel)
Lilienthal Gesellschaft 127. (Available in English trims. as
NACA TN 1105.)

16. Staff of the Ames Aeronautical Laboratory: Equationa, Tables,
and Charts for Compressible Flow’. NACA Rep. 1136, 1963.
(SupersedesNACA TN 1428)

17. Linnell, Riolmrd D.: ~o-dimensional Airfoils in Hyperaonio
Flows. Jour. Aero. Sci., vol. 16,no. 1, Jan. 1949,pp. 22-30.

18. Ivey, H: Reese, and Cline, Charles W.: Effeot of Heat-Copaoity
Lag on the Flow Through Oblique Shook Waves. NACA TN
2196, 1950.

19. Crocco, Luigi: Singolarita dells Corrente Gassosa Iperaoustiea
nell’Intomo di una Prora a Diedro. L’Aeroteonlea, vol. 17,
no. 6, June 1937, pp. 619-534.

20. Soblifer, M.: ‘I’& Relation Between Wall Curvature tmd Shook
Front Curvature in Two-Dimensional Gas l?low. AF, Air
Materiel Command, Wright=PattersonAir Force Bme, In~elfi-
gence Dept., Teoh. Rep. F–TS-1202-IA, 1949, Brown Univ.,
(Providence, R. 1.) Graduate Div. of Applied Mathematiee,
(Trans.) A9-T-9. From: Peenomtinde(Heeresversuohsanstalt)
Arohiv 44/8. Teohnische Hochsohule Dresden, Lehrstuhl fflr
Technieche Mechanik, Oot. 20, 1942.

21. Kraus, Samuel: An Analysiaof SupemonioFlow in the Region of
the Leading Edge of Curved Airfoils, Including Charta for
DeterminingSurface-PressureGradientand Shook-Wave Curva-
ture. NACA TN 2729, 1962.

22. Masa. Inst. of Te~h., Dept. of Elect. Engr., Center of Analyda,
Tables of Supersonic Flow Around Cones, by the Staff of tho
Computing Section, Center of Analysis, under the dimotion of
Zdenek KopaL Teoh. Rep. No. 1, Cambridge, 1947,

23. Shen, S. F.: Hypemonic Flow Over a Slender Cone. Jour. Math.
and Phys., vol. 27, no. 1, Apr. 1948, pp. 56-66.

24. Cabannm, Henri: I%mde de l’Onde de Choo Attaeh6e duns 1SS
I!koulementi de Revolution. Premiere Pmtie: Cm d’un Ob-
staole Termin6 par une Ogive. La Reoherohe A6ronrmtiquo,
no. 24, 1951,pp. 17–23.

25. Shen, S. F., and Lin, C. C.: On the Attached Curved Shook in
Front of a Sharp-nosedAxially Symmetrical Body Plaoed in o
Uniform Stream. NACA TN 2605, 1951.

26. Ince, E. L.: OrdinaryDifferential Equations. First herioan od,
Dover Publications.



A STUDY OF HYPERSONICSMAIiL-DIS!IWW3A.NCIITHEORY 905

27. Lightbill, M. J.: A Tmbnique for Rendering Approximate Solu.
tione to Phyeical Probleme Uniformly Valid. Philos. Msg.,
Sm. 7, VOL40, Dee. 1949,pp. 1179-1.201.

28. Lighthill, M. J.: Higher-Order Approximationa. Seotion E of
VOLV, General Theory of High-Speed Aerodynamics, High-
Speed Aerodynamic and Jet Propulsion. Prirmton Univ.
Press, 1954.

20. Milne, WillSamEdmund: Numerioal CaIouha. Prhceton Univ.
Preaf3,1949.

30. Van Dyke, Milton D.: Applications of Hypemonio Thin Body
Theory. Jour. Aero. Soi., vol. 21, no. 3, Mar. 1954,pp. 179-186.

31. Rossow, Vernon J.: Applicability of the Hypemonic Similarity
Rule to Premure Dietributione Whioh Include the Effeots of
Rotation for Bodies of Revolution at Zero Angle of Attaok.
NACA TN 2399, 1951.

32. Kochin, N. E., Kiebel, I. A., and Rose, N. V.: Teoretich=kaya
Gidromekhanika, Third cd., Leningrad-Moscow O@, 1948.

33. Van Dyke, Milton D.: Practioal Calculation of Second-Order
$upereordoFlow Past Nordifting Bodies of Revolution. NACA
TN 2744, 1952.

34. Buaern&n, A.: I?lik.sigkeits- und Gasbewegung. Handw&terbuoh
der Naturwiasenaobaften, Zweita Auflage (Gustav I?isoher, Jena),
1933, pp. 275-277.

35. Ivey, H. Reese, Kluhker, E. Bernard, and Bowen, Edward N.:
A Method for Determiningg the Aerodynamic Characteristicsof
Two- and Three-Dimensional Shapes at Hypersonic Speeda.
NACA TN 1613, 1948.

36. Eggers, A. J., Jr., and Syvertson, Clarence A.: Inviaoid l?loJvAbout
Airfoik at High Supereoniu Speede. NACA TN 2646, 1952.

37. EggerB,A. J., Jr., and Savin, Raymond C.: Approximate Methoda
for Calculating the Flow About Nonliftiig Bodies of Revolu-
tion at High Supersonic Airspeeds. NACA TN 2579, 1961.

38. Eggem, A. J., Jr.; On the Calculation of Flow About Objects
Traveling at High SupemoniuSpeeds. NACA TN 2811, 1952.

39. Lees, Lester: Noti on the HypeMonio Similarity Law for an
Unyawed Cone. Jour. Aero. Soi., vol. 18, no. 10, Oot. 1951,
pp. 700-702.



..

0


